skip to main content


Search for: All records

Creators/Authors contains: "Paradise, T."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The purpose of this research study is to understand teacher experiences throughout their second year of engagement in the Virginia Tech Partnering with Educators and Engineers in Rural Schools partnership. This partnership is an assets-based community partnership in a rural environment between middle school teachers, regional industry, and university affiliates that is focused on implementing recurrent, hands-on, culturally relevant engineering activities for middle school students. This qualitative study uses constant comparative methodology informed by grounded theory on teacher interviews to capture both teacher experiences in the partnership as well as teacher-identified assets in their classrooms and school communities. Using the sensitizing concepts of pedagogical content knowledge, self-efficacy, and the Interconnected Model of Teacher Growth, this study found that while teachers experienced the program differently depending on their contextual setting of their schools, all teachers expressed shifts in their recognition of and value placed on community assets. Findings also suggest that teachers greatly value involving industry and university partners in the classroom to highlight the applications of engineering in their communities and support a reimagination of engineering conceptions and careers for both students and teachers. Teachers reported that the hands-on, team-based, culturally relevant engineering activities engaged learners and showcased individual strengths in ways they otherwise do not see exhibited in their traditional curriculum. The partnership ultimately allowed teachers to identify how assets in schools’ rural communities, beyond those previously identified within their schools, could aid them in further developing and implementing engineering activities. With teachers serving as role models for students, it is important to support teachers’ reimagination of engineering conceptions and integration into the classroom to ultimately increase students’ engineering engagement. Our findings highlight the value of community-based approaches in supporting engineering integration in the classroom and describe the assets that teachers note as being the most significant in their community. 
    more » « less
  2. Middle school is a pivotal time for career choice, and research is rich with studies on how students perceive engineering, as well as corresponding intervention strategies to introduce younger students to engineering and inform their conceptions of engineering. Unfortunately, such interventions are typically not designed in culturally relevant ways. Consequently, there continues to be a lack of students entering engineering and a low level of diverse candidates for this profession. The purpose of this study was to explore how students in rural and Appalachian Virginia conceive of engineering before and after engagement with culturally relevant hands-on activities in the classroom. We used student responses to the Draw an Engineer Test (DAET), consisting of a drawing and several open-ended prompts administered before and after the set of engagements, to answer our research questions related to changes in students’ conceptions of engineering. We used this study to develop recommendations for teachers for the use of such engineering engagement practices and how to best assess their outcomes, including looking at the practicality of the DAET. Overall, we found evidence that our classroom engagements positively influenced students’ conceptions of engineering in these settings. 
    more » « less
  3. One significant barrier to broadening participation in engineering and recruiting future engineers is the pervasive lack of understanding or even misunderstanding of what engineering is and what engineers do. The challenges to broadening participation in engineering are further complicated as underrepresented groups often report constructs, such as cultural milieu and outcome expectations, as more important than interest in influencing career choices. Addressing such issues is difficult and single exposure interventions are unlikely to make engineering careers seem more relevant or attainable for most students. More sustainable interventions, designed to (1) challenge misperceptions and create relevant conceptions of engineering; (2) maintain and expand situational interest; and, (3) integrate with individual interests, values, and social identities, appear to hold more promise for creating significant change. As a possible means of developing more sustainable interventions, our ITEST project partners researchers, teachers, and local industry representatives in creating a series (approximately 6 across an academic year) of engineering-related learning activities for middle school children in three school systems in or near rural Appalachia. Across the first year of implementation, we involved nine teachers, six people working at three different companies and more than 500 students with a series of activities in each classroom. To examine the impact of our project, we are using mixed methods, including interviews, surveys, classroom observations, and classroom artifacts gathered from multiple project stakeholders, to answer the following research questions: RQ 1: How do participants conceptualize engineering careers? How and why do such perceptions shift throughout the project? RQ 2: What elements of the targeted intervention affect student motivation towards engineering careers specifically with regard to developing competencies and ability beliefs regarding engineering? RQ 3: How can strategic collaboration between K12 and industry promote a shift in teacher’s conceptions of engineers and increased self-efficacy in building and delivering engineering curriculum? RQ 4: How do stakeholder characteristics, perceptions, and dynamics affect the likelihood of sustainability in strategic collaborations between K12 and industry stakeholders? How do prevailing institutional and collaborative conditions mediate sustainability? Our findings to date offer insights across all research questions and have important implications for stakeholders hoping to raise awareness of engineering among youth, particularly in rural areas. 
    more » « less
  4. Our NSF-funded ITEST project focuses on the collaborative design, implementation, and study of recurrent hands-on engineering activities with middle school youth in three rural communities in or near Appalachia. To achieve this aim, our team of faculty and graduate students partner with school educators and industry experts embedded in students’ local communities to collectively develop curriculum to aim at teacher-identified science standard and facilitate regular in-class interventions throughout the academic year. Leveraging local expertise is especially critical in this project because family pressures, cultural milieu, and preference for local, stable jobs play considerable roles in how Appalachian youth choose possible careers. Our partner communities have voluntarily opted to participate with us in a shared implementation-research program and as our project unfolds we are responsive to community-identified needs and preferences while maintaining the research program’s integrity. Our primary focus has been working to incorporate hands-on activities into science classrooms aimed at state science standards in recognition of the demands placed on teachers to align classroom time with state standards and associated standardized achievement tests. Our focus on serving diverse communities while being attentive to relevant research such as the preference for local, stable jobs attention to cultural relevance led us to reach out to advanced manufacturing facilities based in the target communities in order to enhance the connection students and teachers feel to local engineers. Each manufacturer has committed to designating several employees (engineers) to co-facilitate interventions six times each academic year. Launching our project has involved coordination across stakeholder groups to understand distinct values, goals, strengths and needs. In the first academic year, we are working with 9 different 6th grade science teachers across 7 schools in 3 counties. Co-facilitating in the classroom are representatives from our project team, graduate student volunteers from across the college of engineering, and volunteering engineers from our three industry partners. Developing this multi-stakeholder partnership has involved discussions and approvals across both school systems (e.g., superintendents, STEM coordinators, teachers) and our industry partners (e.g., managers, HR staff, volunteering engineers). The aim of this engagement-in-practice paper is to explore our lessons learned in navigating the day-to-day challenges of (1) developing and facilitating curriculum at the intersection of science standards, hands-on activities, cultural relevancy, and engineering thinking, (2) collaborating with volunteers from our industry partners and within our own college of engineering in order to deliver content in every science class of our 9 6th grade teachers one full school day/month, and (3) adapting to emergent needs that arise due to school and division differences (e.g., logistics of scheduling and curriculum pacing), community differences across our three counties (e.g., available resources in schools), and partner constraints. 
    more » « less